排序算法:所有常见排序方法

排序算法

O ( n 2 ) O(n^2) O(n2)

冒泡排序

  void bubbleSort(int[] arr){
        for(int i = 0 ; i < arr.length ; i ++){
            for(int j = 0 ; j < arr.length - i - 1 ; j ++ ){
                if(arr[j] > arr[j + 1]){
                    int mid = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = mid;
                }
            }
        }
    }

选择排序

 void selectSort(int[] arr){
        for(int i = 0 ; i < arr.length ; i ++){
            for(int j = i + 1; j < arr.length ; j ++){
                if(arr[j] < arr[i]){
                    int mid = arr[i];
                    arr[i] = arr[j];
                    arr[j] = mid;
                }
            }
        }
    }

插入排序

  • 近乎有序的话可达到 O(n)
 void insertSort(int arr[]){
        for(int i = 1 ; i < arr.length ; i ++){
            for(int j = i ; j > 0 ; j--){
                if(arr[j] < arr[j - 1]){
                    int mid = arr[j];
                    arr[j] = arr[j - 1];
                    arr[j - 1] = mid;
                }
            }
        }
    }

希尔排序

  • 复杂度 O ( n 2 / 3 ) O(n^{2/3}) O(n2/3)

关键思想

  • 进行排序的元素索引位置是 0、step、2step、3step …
 void shellsort(int[] arr){
        for(int step = arr.length - 1 ;step >= 1 ; step /= 2){
            for(int i = step ; i <= arr.length - 1 ; i += step){
                for(int j = i ; j >= step ; j -= step){
                    if(arr[j] < arr[j - step]){
                        int mid = arr[j];
                        arr[j] = arr[j - step];
                        arr[j - step] = mid;
                    }
                }
            }
        }
    }

O ( n l o g n ) O(nlogn) O(nlogn)

归并排序

递归的终止

  • 二分就是只有一个元素时终止

每次 return 都返回一个新数组

  • 原数组只用来传值

归并过程的三个索引

  • 右边数组的
  • 左边数组的
  • 归并后要返回的数组的
    int[] mergeSort(int[] arr){
        return merge(arr , 0 , arr.length - 1);
    }

    private  int[] merge(int[] arr , int l , int r){
        // 明确递归终止
        //对于分治来说,比如分两段,那么终止条件一定是一段长度是 1;如果分三段,那么终止条件一定是该段长度 1 或者 2,否则还可再分
        if(r - l == 0 ){
            return new int[]{arr[r]};
        }


        int mid = (l + r) / 2;
        int[] lArr = merge(arr , l , mid);
        int[] rArr = merge(arr , mid + 1 , r);
        int[] res = new int[r - l + 1];

        for(int i = 0 , lIndex = 0 , rIndex = 0; i < r - l + 1 ; i ++){
            if( rIndex >= rArr.length
                    || ( lIndex < lArr.length && lArr[lIndex] <= rArr[rIndex])){
                res[i] = lArr[lIndex ++];
            }else {
                res[i] = rArr[rIndex ++];
            }
        }

        return res;
    }

快排

三个索引

  • 要确定位置元素的索引
  • 区间右边的索引(代表比
  • 区间左边的索引

终止条件

  • while( lIdx <= rIdx)
  • 因为如果只有两个元素的话,那么 lIdx 就等于 rIdx 了
  • 因此目标元素的位置就是 rIdx(因为这种终止条件下, Idx 代表的是比 target 大的,所以其左边第一个才是<= target 的)
   void quickSort(int[] arr){
        _quickSort(arr , 0 , arr.length - 1);
    }

    private static void _quickSort(int[] arr , int l , int r){
        if(l >= r){
            return;
        }

        int target = arr[l];
        int lIdx = l + 1 , rIdx = r;
        // 因为要让两个元素的也能进入,所以终止条件取 =,即:
        // lIdx 最终代表的 >= target 的
        // rIdx 是 < target 的或者是起始位置下一个
        while(lIdx <= rIdx){
            if(arr[lIdx] >= target){
                while (arr[rIdx] > target && lIdx <= rIdx){
                    rIdx --;
                }
                if (lIdx > rIdx) {
                    break;
                }else {
                    ArrUtil.swap(arr , lIdx , rIdx --);
                }
            }
            lIdx ++;
        }
        ArrUtil.swap(arr , l  , rIdx);

        _quickSort(arr , l , rIdx - 1);
        _quickSort(arr , rIdx + 1 , r);

    }

堆排序

两个步骤

  • 构建大堆
    • 从 i = 1 开始,i = arr.length 结束
    • 自底向上调整(只比较父节点就可以,因为只要保证每个节点增加时都比父节点小,那么就不用担心交换做了父节点后但比另一个兄弟小),保证父节点必须比两个子节点都大,不然就交换
  • 对大堆进行调整
    • 从后向前遍(即 i = arr.length - 1 开始),直到只剩一个元素(即 i = 1)结束
    • 把堆顶(即 index = 1,代表的最大元素)和最后的位置的元素交换
    • 重新调整堆(自顶向下调整,直到遇见父节点都比左右子节点大结束),然后又得到新的堆顶
    • 重复上面两步
    void heapSort(int[] arr){
        // 构建大堆
        for(int i = 1;  i < arr.length ; i ++ ){
            int newDataIdx = i;
            int parent = newDataIdx / 2;
            while(parent >= 1 && arr[parent] < arr[newDataIdx]){
                ArrUtil.swap(arr , parent , newDataIdx);
                newDataIdx = parent;
                parent /= 2;
            }
        }

        // 用大堆实现从小到大排序
        for(int i = arr.length - 1; i > 1 ; i --){
            ArrUtil.swap(arr , i , 1);
            int parent = 1;
            while (parent <= (arr.length - 1) /2
                    && (arr[parent * 2] > arr[parent] || arr[parent * 2 + 1] > arr[parent])){
                int lchildIdx = parent * 2 < i ? parent * 2 : 0;
                int rchildIdx = parent * 2 + 1 < i ? parent * 2 + 1 : 0;
                int newParentIdx;

                if( lchildIdx == 0){
                    break;
                }else if(rchildIdx == 0){
                    newParentIdx = lchildIdx;
                }else {
                    newParentIdx = arr[lchildIdx] > arr[rchildIdx] ? lchildIdx : rchildIdx;
                }

                ArrUtil.swap(arr , newParentIdx , parent);
                parent = newParentIdx;
            }
        }


    }

O(n)

计数排序

  • 仅适用于已知有多少种不同元素

思想

  • 遍历一次,对每种的元素个数进行计数
  • 按每种元素的个数进行还原(例如 3个1、2个2,那么数组前三个放 1,后两个放 2)
已标记关键词 清除标记
相关推荐
程序员的必经之路! 【限时优惠】 现在下单,还享四重好礼: 1、教学课件免费下载 2、课程案例代码免费下载 3、专属VIP学员群免费答疑 4、下单还送800元编程大礼包 【超实用课程内容】  根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能!   套餐中一共包含2门MySQL数据库必学的核心课程(共98课时)   课程1:《MySQL数据库从入门到实战应用》   课程2:《高性能MySQL实战课》   【哪些人适合学习这门课程?】  1)平时只接触了语言基础,并未学习任何数据库知识的人;  2)对MySQL掌握程度薄弱的人,课程可以让你更好发挥MySQL最佳性能; 3)想修炼更好的MySQL内功,工作中遇到高并发场景可以游刃有余; 4)被面试官打破沙锅问到底的问题问到怀疑人生的应聘者。 【课程主要讲哪些内容?】 课程一:《MySQL数据库从入门到实战应用》 主要从基础篇,SQL语言篇、MySQL进阶篇三个角度展开讲解,帮助大家更加高效的管理MySQL数据库。 课程二:《高性能MySQL实战课》主要从高可用篇、MySQL8.0新特性篇,性能优化篇,面试篇四个角度展开讲解,帮助大家发挥MySQL的最佳性能的优化方法,掌握如何处理海量业务数据和高并发请求 【你能收获到什么?】  1.基础再提高,针对MySQL核心知识点学透,用对; 2.能力再提高,日常工作中的代码换新貌,不怕问题; 3.面试再加分,巴不得面试官打破沙锅问到底,竞争力MAX。 【课程如何观看?】  1、登录CSDN学院 APP 在我的课程中进行学习; 2、移动端:CSDN 学院APP(注意不是CSDN APP哦)  本课程为录播课,课程永久有效观看时长 【资料开放】 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化。  下载方式:电脑登录课程观看页面,点击右侧课件,可进行课程资料的打包下载。
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页